doi:10.13582/j.cnki.1674-5876.2025.01.011

砷石膏中砷的形态分布及硫酸浸出

徐文婷¹,陈国梁^{1,2*},管青军¹,KHAMPHOUVANH Viengvilay(阿唐)¹,毛腾¹, 屈志慧¹,梁碧心¹

(1.湖南科技大学 资源环境与安全工程学院,湖南 湘潭 411201;2.湖南科技大学 煤炭资源清洁利用与矿山环境保护湖南省重点实验室,湖南 湘潭 411201)

摘 要:砷石膏在有色冶炼行业中广泛存在.由于砷具有易挥发、毒性高的特点,因此研究砷的安全高效脱除,不仅关系到砷石膏的循环利用,而且对有色金属行业的绿色健康发展具有重要意义.从 SEM-Mapping 检测看,砷石膏中的砷主要以独立的砷酸钙形式存在.根据砷酸钙易溶于酸的特性,采用硫酸浸出的方法分离砷石膏中砷,确定最佳浸出条件为固液比1:20,pH=2,温度为20℃,连续浸出3次,砷的浸出率为99.08%.对含砷浸出液中的砷采用钙盐和铁盐两步沉淀除砷法进行去除.结果表明:在含砷浸出液中添加氧化钙使溶液 pH 值为12 时砷去除效果明显,随后根据浸出液中残余砷的摩尔浓度按铁砷摩尔比为1:1添加硫酸亚铁使除砷率达到99.68%.浸出动力学研究表明砷的浸出过程符合 Avrami 模型,活化能为5.952 kJ/mol.研究结果可为此类砷石膏的高效脱砷提供一条低成本、可循环的途径.

关键词:砷石膏;硫酸;砷;浸出动力学
中图分类号:X754 文献标志码:A 文章编号:1672-9102(2025)01-0070-09

On the Morphological Distribution and Sulfuric Acid Leaching of Arsenic in Arsenic-bearing Gypsum

XU Wenting¹, CHEN Guoliang^{1,2}, GUAN Qingjun¹, KHAMPHOUVANH Viengvilay¹,

MAO Teng¹, QU Zhihui¹, LIANG Bixin¹

(1. School of Resources, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;

2. Hunan Provincial Key Laboratory of Clean Utilization of Coal Resources and Mine Environment Protection,

Hunan University of Science and Technology, Xiangtan 411201, China)

Abstract: Arsenic-bearing gypsum (ABG) is widespread in the non-ferrous smelting industry. The study of safe and efficient removal of arsenic (As) is crucial for recycling ABG and the sustainable development of the non-ferrous metals industry owing to the high volatility and toxicity of As. From the SEM-Mapping, As is mainly shown in the form of free-standing calcium arsenate. According to the characteristic of calcium arsenate soluble in acid, sulfuric acid leaching is used to separate arsenic from ABG. The optimum conditions are determined as follows:solid-liquid ratio of 1 : 20, pH = 2, and temperature of 20 °C. The As leaching rate is 99.08% after 3 sequential leaching. As from arsenic-containing leachate is removed by using a two-step precipitation with calcium and iron salts. The results indicate that the removal effect of As is obvious when addition of calcium oxide to pH of solution = 12. The n(Fe) : n(As) = 1 : 1 of FeSO₄ is added to the leachate according to the residual As molarity to reach 99.68% As removal rate. Leaching kinetic studies show that the leaching process of As is in accordance with the Avrami model, with an activation energy of 5.952 kJ/mol. The research results has provided

收稿日期:2022-10-12

基金项目:湖南省自然科学面上基金资助项目(2023JJ30230);湖南省教育厅优秀青年基金资助项目(21B0451);湖南省教学研究与 改革资助项目(HNJG-2022-0174);大学生创新训练资助项目(S2024105340120)

^{*}通信作者,E-mail:glchen@hnust.edu.cn

a low-cost, recyclable way for the efficient removal of As from such ABG.

Keywords: arsenic-bearing gypsum; sulfuric acid; arsenic; leaching kinetics

砷作为剧毒元素,所引发的环境污染是环境治理中的难题之一^[1].矿化岩石的风化、冶炼加工等过程 都会导致土壤和水系中砷的增加.在自然界中,除了极少数砷以游离态的形式存在外,大部分砷以砷酸盐、 硫化物等化合物的形式与有色金属矿物共生^[2],有色金属冶炼过程中,大部分砷被氧化为As₂O₃进入到烟 气中,经烟气洗涤过程砷进入到"污酸"中,"污酸"经石灰-铁盐法处理后转化为达标的工业用水,同时产 生大量含砷石膏.固体中砷质量分数超过0.1%时,被视为危险固体废物^[3],而有色金属冶炼过程中的砷石 膏中砷的质量分数从5%到40%不等^[4],并且石膏中的砷具有易溶性,会对周边土壤、水体、大气造成严重 污染^[5],因此砷石膏是一种对环境危害极大的危废.砷石膏中砷的安全高效脱除不仅关系到砷石膏的循环 利用,而且对有色金属行业的绿色健康发展具有重要意义.

针对含砷废渣的砷分离处理主要有湿法和火法工艺^[6].在火法工艺中,通常根据不同温度下物质的挥 发性差异实现固体脱砷的目的,研究表明,当焙烧温度超过465 ℃,砷主要以As₂O₃的形式挥发,从而实现 与含砷废渣中其他高沸点物质的分离^[7].但是火法工艺存在应用规模小、工作环境差、能耗高及设备投资 成本高等缺点.湿法工艺由于经济性高、回收率高、环境友好等特点被研究者广泛采用,目前对含砷废渣中 砷的分离方法主要有水热法、酸浸法、碱浸法、氧压法、微波辅助法等,其中酸浸法和碱浸法是工业生产中 常用方法^[8].HE 等^[9]对含砷(质量分数12.97%)的阳极泥进行碱浸除砷,通过加入 NaNO₃ 使阳极泥中的 砷与 NO₃⁻在碱性氧压条件下转化为可溶性 AsO₄³⁻,浸出率达到95.36%.碱浸法在工业中虽然普遍应用,但 脱砷率还有待提高.酸浸工艺主要是将砷转化为可溶性砷酸释放到溶液中,再通过固液分离去除砷^[10].LI 等^[11]对含砷熔灰进行氧化酸浸,实现了 As,Cd,Zn 和 Sb 的高效分离,砷的去除率达 98.19%.

本研究针对云南某有色金属冶炼厂的砷石膏,系统分析砷石膏中砷的存在形态、基本性质及其与石膏 的共生关系,探究硫酸对砷石膏中砷的浸出效率和浸出动力学,并对浸出液进行净化脱砷.本研究为砷石 膏中砷的脱除提供了一种简单、高效、低成本的方法.

实验部分

1.1 实验材料

本文实验材料砷石膏来自中国云南某有色金属冶炼厂.所有的分析试剂均为分析纯,硫酸质量分数为 95%~98%,用于酸浸实验;硝酸质量分数为65%~68%,盐酸质量分数为36%~38%,用于砷石膏样品消 解;过氧化氢质量分数为30%,醋酸质量分数>99%,盐酸羟胺质量分数>99%,氢氟酸质量分数≥40%,用 于连续化学提取;氧化钙质量分数≥97%,硫酸亚铁质量分数为99%~101%,用于含砷废水的脱砷处理.

1.2 实验仪器

样品中砷质量浓度采用 AAS 石墨炉原子吸收光谱仪(Agilent AA200)测定;砷样品的形态采用连续化 学提取法进行分析;样品的组分及占比采用 X 射线荧光光谱仪(XRF, Axios 03, Netherlands)进行分析;物 质晶体采用 X 射线自动衍射仪(XRD, Bruker D8 Advance, Gemini)进行分析,利用 Cu 靶辐射,扫描角度为 5°~90°,扫描速度为 1°/min;样品的微观形貌、砷空间分布采用电子扫描显微镜能谱仪(SEM-Mapping, Zeiss Sigma 300, Gemini)进行表征.

1.3 实验步骤及方法

1) 连续化学提取法:重金属的毒性与重金属的存在形态有关, 1979 年 TESSIER^[12] 首次提出用连续化 学提取法对重金属形态进行分级提取.本研究根据砷的特性以 Tessier 连续化学提取法为基础,并结合商 攀峰^[13]的方法,利用水、HAc 等试剂将石膏中的砷分成水溶态、醋酸可提取态、可还原态、可氧化态和残渣 态(见表1),以评价砷在环境中的有效性.

2) 酸浸出实验: 不同的酸碱度下, 砷酸盐的溶解度有很大的差异.因此, 可以通过调控含砷石膏体系的 酸碱度, 将与石膏结合的砷酸盐转变成易溶的砷酸氢盐, 从而把砷从含砷石膏中脱除.根据原料的成本和 获取的难易,本实验选用 H₂SO₄ 溶液.砷石膏中砷的浸出及浸出液脱砷过程如图 1 所示,首先依次配制出 pH 值为 1~6 的硫酸溶液,以 20 g 砷石膏为原料,按 m(砷石膏,g) : V(硫酸,mL) = 1 : 5,1 : 10,1 : 20, 1 : 30,1 : 40,1 : 50 的比例分别加入不同体积的 H₂SO₄ 溶液(pH = 1~6),然后在温度为 20~70 ℃(±3 ℃)、 转速 120 r/min 下充分搅拌 45 min,使用循环水式真空泵进行固液分离.如此反复,依次得到脱砷 2 次、3 次 后的石膏和高质量浓度的含砷浸出液.

砷的形态	提取方法
水溶态	蒸馏水,振荡 16 h
酸可提取态	0.11 mol/L 醋酸,振荡 16 h
可还原态	0.1 mol/L 盐酸羟胺,振荡 16 h(硝酸酸化至 pH=2)
可氧化态	质量分数为 30%的过氧化氢,1 mol/L 硝酸,11 mol/L 醋酸铵,振荡 16 h(硝酸酸化至 pH=2)
残渣态	硝酸,氢氟酸,消解1h

3)浸出液除砷实验:Ca和Fe能与砷酸离子结合形成沉淀,从而将砷从含砷浸出液中去除.本实验中利用钙盐和铁盐分别对含砷浸出液进行除砷研究.向质量浓度为5.01 g/L的400 mL含砷浸出液中加入氧化钙,调节溶液 pH值至3,充分搅拌40 min后采用真空泵进行固液分离,并测定分离后溶液中的砷的质量浓度.之后重复上述操作,继续在分离后的溶液中加入氧化钙,调节含砷浸出液的 pH值为4~12,并测定每次分离后溶液中砷的质量浓度.按 n(Fe):n(As)为0:1,0.5:1,1:1,2:1,3:1分别在质量浓度为2.5 g/L的1L含砷浸出液中加入硫酸亚铁,充分搅拌40 min后用真空泵进行固液分离,并测量每次分离后溶液中砷的质量浓度.

图1 砷石膏中砷的浸出及浸出液脱砷过程

浸出率(脱砷率)和除砷率分别按照式(1)和式(2)进行计算:

浸出率(脱砷率):
$$E_1 = \frac{C_1 V_1}{\omega m} \times 100\%;$$
 (1)

除砷率:
$$E_2 = (1 - \frac{C_2 V_3}{C_1 V_2}) \times 100\%.$$
 (2)

式中: C_1 为浸出液中砷的质量浓度,mg/L; V_1 为浸出液体积,L;m为砷石膏质量,mg; ω 为砷石膏原料中砷 元素含量占比,%; C_2 为除砷时加入钙盐/铁盐反应后浸出液中砷的质量浓度,mg/L; V_2 为除砷时加入钙 盐/铁盐反应前浸出液的体积,L; V_3 为除砷时加入钙盐/铁盐反应后浸出液的体积,L.

2 实验结果与讨论

2.1 砷石膏的物质分析

X 射线荧光光谱(X-Ray Fluorescence Spectrometer, XRF)分析可以确定样品中元素的组成.XRF 结果 (见表 2)显示砷石膏中 As 的含量(质量分数)为 6.11%;其余元素以 0,Ca,F和 S 为主,其含量分别为

32.30%,27.76%,12.20%和 10.62%;此外还有少量的 Pb,Fe 和 Cd 等,其含量分别为 0.68%,0.08% 和 0.02%.X 射线衍射(X-Ray Diffraction,XRD)的分析结果(见图 2)显示砷石膏的主要成分为 CaSO₄ · 2H₂O, 含砷的化合物主要为砷酸钙(Ca₃(AsO₄)₂,Ca₄(OH)₂(AsO₄)₂ · 4H₂O),以氧化砷(As₂O₅)形式存在的砷 很少.XRF 和 XRD 分析表明,原料的主要成分为二水硫酸钙,砷在石膏中的存在形式主要为砷酸钙,其含量远超危险固废标准含量.

X~ 町日月丁工女儿ぶ成刀及日P	表 2	砷石膏中主要元素成分及占出
------------------	-----	---------------

元素	0	Са	F	S	As	Mg	Si
质量分数/%	32.30	27.76	12.20	10.62	6.11	4.12	0.40
元素	Cl	Al	Fe	Pb	Na	Cd	Bi
质量分数/%	0.20	0.14	0.08	0.68	0.05	0.02	0.03

通过对原样进行消解,得到砷石膏中总砷的含量(质量比)为79g/kg.连续化学提取结果显示,砷石膏 中水溶态、酸可提取态、可还原态、可氧化态和残渣态砷的比例分别为0.69%,78.69%,9.34%,5.89%和 5.39%(图3),其中砷的酸可提取态是砷石膏中占比最多的组分.水溶态、酸可提取态、可还原态是一种松 散结合相,是石膏中容易浸出的形态,在酸性条件下便可发生溶解并释放到水体和土壤中;可氧化态是一 种有机质和硫化物结合态,在氧化条件下被释放,具有潜在危害;残渣态的稳定性最高,在酸性条件下难以 发生溶解^[14].此砷石膏中存在大量的可溶态砷,具有较高的环境风险,少量砷为残渣态,说明只有少量砷 存在于石膏内部.

为了进一步研究砷石膏中砷与石膏的共生关系,对砷石膏进行扫描电子显微镜(Search Engine Marketing Mapping,SEM-Mapping)检测(图4、图5).从图4可以看出,砷石膏主要呈板状和柱状,表面附着 细小颗粒,周围存在许多球状及蜂窝状结构.从图5的元素分布来看,板状和柱状主要为石膏晶体,球状及 蜂窝状结构为砷的主要附载体.XRD可以定性样品物相组成,因此,结合砷石膏的 XRD 的结果(图2)可以 得出这些球状及蜂窝状结构应该为砷酸钙,砷石膏中的砷主要以独立的砷酸钙形式存在,少量砷及砷酸钙 吸附在其表面,因此砷石膏中的砷易被酸浸出.

图4 砷石膏的扫描电镜结果(2000倍)

图5 砷石膏的微观形态和元素占比(a)以及元素分布(b)(5000倍)

2.2 砷石膏在硫酸溶液中砷的浸出

图 6 显示了砷石膏中砷在硫酸溶液中的浸出结果.随着硫酸溶液 pH 值的减小,砷石膏中残留的砷含 量随之降低,见图 6(a).在 pH 值从 6 依次降至 1 时,砷石膏中残留的砷含量分别为 8.99,6.92,5.04,3.66, 2.00,0.88 g/kg,这是由于酸性越强砷酸钙越易转化为砷酸溶解到水溶液中.当溶液 pH<2,砷以 H₃AsO₄ (aq.)形态存在于水溶液中;当溶液 pH 为 3~7,7~11,>12 时,砷分别以 H₂AsO₄⁻,HAsO₄²⁻,AsO₄³⁻的形式 与 Ca²⁺相结合产生沉淀^[11].浸出过程中产生的化学反应为

$$Ca_{3}(AsO_{4})_{2} \cdot 2H_{2}O + 3H_{2}SO_{4} = 3CaSO_{4} \cdot 2H_{2}O + 2H_{3}AsO_{4};$$
 (3)

$$Ca_{4}(OH)_{2}(AsO_{4})_{2} \cdot 4H_{2}O + 4H_{2}SO_{4} + 2H_{2}O = 4CaSO_{4} \cdot 2H_{2}O + 2H_{3}AsO_{4}.$$
(4)

如图 6(b) 所示, 在浸出温度为 20, 30, 40, 50, 60, 70 ℃时, 砷石膏中残留的砷含量分别为 2.18, 1.91, 1.84, 1.70, 1.60, 1.59 g/kg, 说明温度升高有利于砷石膏中砷的浸出^[15].图 6(c)显示增加酸浸液的用量可 以显著提高砷的浸出效率, 当原料质量(*m*, g): 酸浸液体积(*V*, mL)=1:20 时, 砷石膏中残留的砷含量

降至 1.79 g/kg,之后继续提高酸浸液的用量,砷的浸出效果变化不明显.浸出次数与脱砷效率的关系如图 6(d)所示,从图 6(d)中可以看出,浸出 3 次可以明显降低砷石膏中砷的含量,此时砷石膏中残留的砷含 量为 0.73 g/kg,浸出率达到 99.08%,当进一步增加浸出次数时,砷石膏中残留的砷含量下降不明显.由以上 分析可得,影响砷石膏中砷的浸出效果最显著的因素为浸出液的 pH 值,其次为固液比、浸出次数和温度.

图 7 为砷石膏在温度为 20 ℃, pH 值为 1, m(砷石膏): V(硫酸)为1:20的条件下,用硫酸浸出 1 次后放大 2 000 倍的 SEM 图,由图 7 发现砷石膏依然以板状和柱状为主,说明浸出并 未破坏石膏的结构.相比原样品,浸出后的石膏晶体边缘清晰、 表面光滑,这进一步说明细碎的球状及蜂窝状结构为砷的主要 载体.另一方面,在放大同样倍数下观察到浸出后的石膏晶体尺 寸较原样品有明显的增加,这可能是由于砷酸钙与硫酸在反应 过程中形成的二水硫酸钙在石膏表面结晶生长,促使其变大.

图 8 为砷石膏在温度为 20 ℃, m(砷石膏): V(硫酸)为 1:20的条件下,经不同酸碱度的硫酸溶液浸出后放大 500 倍的

图 7 砷石膏硫酸浸出 1 次后的 SEM 扫描 结果(2000 倍)

SEM 图.当 pH 为 1~2 时,石膏表面光滑,几乎没有细小颗粒;当 pH>2 时,石膏表面附着一些细小颗粒且存在大量游离颗粒,这进一步证明 pH 值为 2 是砷酸钙发生溶解的临界值.因此综合考虑浸出效果和成本,采用硫酸浸出砷石膏中砷的最佳条件为 pH=2,m(砷石膏): V(硫酸)=1:20,温度 20 ℃和循环浸出 3 次.

a:pH=1;b:pH=2;c:pH=3;d:pH=4;e:pH=5;f:pH=6
 图 8 砷石膏在不同酸碱度的硫酸浸出液中浸出1次的 SEM 图(500 倍)

2.3 浸出液中砷的净化去除

Ca和Fe能与砷酸根离子生成难溶物,因此,钙盐和铁盐常用于砷废水中砷的去除.本文分别对氧化钙除砷以及硫酸亚铁除砷的条件进行研究.在质量浓度为5.01 g/L的400 mL含砷浸出液中加入氧化钙调节溶液 pH值进行连续沉淀,去砷效果如图9所示,随着氧化钙的不断加入,溶液的 pH值上升,浸出液中

(7)

砷的质量分数逐渐降低.在 pH 值从 3 增至 10 时,浸出液中砷质量浓度从 5.01 g/L 下降至 2.54 g/L;当 pH 值继续增加至 12 时,砷质量浓度显著下降至 0.32 g/L,氧化钙除砷的去除率达到 93.61%.这是因为碱性条 件下溶液中的砷与 Ca²⁺反应形成砷酸钙沉淀导致的^[16],产生的化学反应如式(5)和式(6).在含砷的浸出 液中通过添加硫酸亚铁研究铁砷摩尔比对砷的去除效果,在质量浓度为 2.5 g/L 的 1 L 含砷浸出液中添加 硫酸亚铁去砷,结果如图 10 所示,当 n(Fe) : n(As)从 0 : 1 增大至 1 : 1 时,浸出液中砷的质量浓度显著 降低至 1.6 g/L,继续增大铁砷摩尔比对浸出液中砷的去除影响不大,使用硫酸亚铁除砷的去除率达到 36.00%.硫酸亚铁中的 Fe²⁺在溶液中易被氧化成 Fe³⁺,并与砷酸根离子产生臭葱石(FeAsO₄)沉淀,产生的 化学反应如式(7).

$$3Ca^{2+}+2AsO_{4}^{3-}=Ca_{3}(AsO_{4})_{2}\downarrow;$$

$$4Ca^{2+}+2AsO_{4}^{3-}+2OH^{-}=Ca_{4}(OH)_{2}(AsO_{4})_{2}\downarrow;$$
(6)

$$\operatorname{Fe}^{3+} + \operatorname{AsO}_{4}^{3-} = \operatorname{FeAsO}_{4} \downarrow$$
.

在分别探究钙盐和铁盐去砷的最佳条件后,对含砷浸出液进行石灰-硫酸亚铁综合除砷分析.选取质量浓度为 3.10 g/L 的含砷浸出液进行实验,采用氧化钙调节 pH 到 12 时浸出液中砷的质量浓度显著下降为 0.21 g/L,除砷率为 93.23%,再根据浸出液中剩余的砷的质量浓度按铁砷摩尔比为 1:1 添加硫酸亚铁,最终浸出液中砷的质量浓度只有 9.72 mg/L,石灰-硫酸亚铁综合除砷的去除率达 99.69%.因此石灰-铁盐综合对浸出液的除砷效果显著.

图9 氧化钙调节 pH 对含砷浸出液中砷去除的影响

2.4 浸出动力学

为了进一步促进此方法的工程应用,本文对砷石 膏中砷的硫酸浸出动力学进行研究.不同温度下砷浸 出率与浸出时间的关系如图 11 所示,随着浸出时间的 增加,砷的浸出率逐渐增加,浸出 1 h 之内,浸出率显 著上升,1 h 之后浸出率逐渐趋于稳定.浸出温度的升 高对浸出率的影响不大.

对于液-固两相反应的物理模型通常有缩核模型、 整体反应模型、微粒模型、单控模型等,缩核模型常作 为固体浸出的动力学模型分析^[17].将图 11 的实验数据 代入不同的动力学控制模型公式中,对公式左边的计

图 10 不同的铁砷摩尔比对浸出液中砷去除的影响

图 11 不同温度下砷浸出率与浸出时间的关系

算结果与时间 t 作散点图并对其进行线性拟合, 拟合结果如表 3 所示, 结果显示化学反应控制模型、扩散 控制模型、产物层界传质与扩散共同控制模型拟合的相关系数 R² 分别为 0.712 63, 0.670 99, 0.952 90, 产 物层界传质与扩散共同控制模型的拟合相关性系数较高, 但仍不能精确拟合. Avrami 方程最初用作结晶动 力学, 现也常用作金属及金属氧化物的酸浸反应过程^[18]. 将图 11 的数据代入 Avrami 方程, 作出不同温度 下的 ln t 与 ln [-ln (1-x)]的散点图并进行线性拟合, 如图 12 所示. Avrami 方程能较好地拟合砷石膏在不

77

同温度下砷的浸出率与时间的关系,平均相关系数 R² 为 0.970 14,具有较强的相关性,按照斜率求出特征 常数 n 为 0.39~0.47,平均特征常数为 0.41.

表 3 不同温度下的 4 种动力学模型在硫酸浸出过程中的反应速率常数和相关性系数

T∕°C	化学控制 1-(1-x) ^{1/3} =kt		扩散控制 1-2x/3-(1-x) ^{2/3} =kt		产物层界传质与 扩散共同控制 ln (1-x)/3-1+(1-x) ^{-1/3} =kt		Avrami 方程 ln[-ln (1-x)] =ln k +nln t	
	k	R^2	k	R^2	k	R^2	k	R^2
20	0.001 74	0. 757 24	0.000 83	0.764 87	0.004 24	0.943 46	0.390 19	0.969 74
50	0.001 68	0.708 05	0.000 79	0.704 42	0.005 96	0.935 85	0.373 53	0.962 07
80	0.002 03	0.672 60	0.000 75	0.543 69	0.050 06	0.979 40	0.472 69	0.978 60
平均	0.001 82	0.712 63	0.000 79	0.670 99	0.020 09	0.952 90	0.412 14	0.970 14

反应速率常数 k 是绝对温度 T 的函数,按照 Arrhenius 公式,以 ln k 对 T^{-1} 作图,如图 13 所示,根据斜 率计算出反应活化能 E 为 5.952 kJ/mol,表明反应的能垒越低,需要的外界能量越少,相对干活化能高的 反应更容易发生.Arrhenius 公式为

$$\ln k = \ln A - \frac{E}{RT} \,. \tag{8}$$

式中:k为反应速率常数;A为频率因子,min⁻¹;E为反应活化能,kJ/mol;R为气体常数,8.314 J/(mol·K);T为热力学温度,K.

根据 Arrhenius 函数在坐标中的截距计算频率因子为 5.1,反应速率常数为 5.1 exp $\frac{-5952}{RT}$,因此,砷石 膏在硫酸溶液中的浸出反应过程的动力学公式为 - $\ln(1 - x) = 5.1 \exp\left(\frac{-5952}{RT}\right) t^{0.41}$. 当活化能小于 10 kJ/mol时,浸出过程一般由扩散过程控制,但在强搅拌条件下浸出过程通常不受外部扩散的控制,而这 种浸出率的增长在不同温度中大致相同,浸出温度对浸出率影响不大的浸出过程更符合内部扩散的控制.

图 12 不同温度下 ln t 与 ln [-ln (1-x)]的线性关系

结论 3

1) 砷石膏中的砷主要以独立的砷酸钙形式存在于砷石膏中,少量吸附在其表面.

2) 硫酸浸砷工艺最佳条件为 m(砷石膏): V(硫酸)=1:20, pH=2, 温度 20 ℃, 浸出 3 次, 在该条件 下砷石膏的脱砷率达到 99.08%.

3) 浸出动力学结果表明砷石膏的浸出速率呈先快后慢的趋势,在15 min 以内反应速率迅速增长,随 后缓慢降低,浸出反应过程的动力学公式为 – $\ln(1 - x) = 5.1 \exp\left(\frac{-5.952}{RT}\right) t^{0.41}$,此浸出反应过程受内扩 散控制,活化能为 5.952 kJ/mol.

4) 对含砷浸出液进行净化除砷,可采用先添加氧化钙使溶液 pH=12,再根据浸出液中剩余砷的摩尔 浓度按照铁砷比为1:1 添加硫酸亚铁的方法,最终浸出液中除砷率可达到 99.68%.

参考文献:

- [1] ZHAO C, DU M, YANG J, et al. Changes in arsenic accumulation and metabolic capacity after environmental management measures in mining area[J]. Science of the Total Environment, 2023, 855: 158652.
- [2] LEHOUX A P, LOCKWOOD C, MAYES W M, et al. Gypsum addition to soils contaminated by red mud: implications for aluminium, arsenic, molybdenum and vanadium solubility [J]. Environmental Geochemistry and Health, 2013, 35(5): 643-656.
- [3] 国家环境保护总局,国家质量监督检验检疫总局.危险废物鉴别标准 毒性物质含量鉴别:GB 5085.6—2007[S].2007.
- [4] 郝莹.燃煤副产物脱硫石膏中重金属富集的地球化学特征及其环境风险[D].上海:上海大学,2017.
- [5] 高坤,冯巧梅,周文静,等.酸性矿山废水环境中砷的污染机制与修复技术[J].环境科学与技术,2022,45(8):107-116.
- [6] LONG H, ZHENG Y J, PENG Y L, et al. Separation and recovery of arsenic and alkali products during the treatment of antimony smelting residues [J]. Minerals Engineering, 2020, 153: 106379.
- [7] CHE J Y, ZHANG W J, MA B Z, et al. A shortcut approach for cooperative disposal of flue dust and waste acid from copper smelting: Decontamination of arsenic-bearing waste and recovery of metals [J]. Science of the Total Environment, 2022: 157063.
- [8] 杨贵生.用碳酸钠溶液从铜冶炼烟尘中脱除砷试验研究[J].湿法冶金,2019,38(3):235-238.
- [9] HE Y L, XU R D, HE S W, et al. Alkaline pressure oxidative leaching of bismuth-rich and arsenic-rich lead anode slime[J]. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(6): 689-700.
- [10] WANG Y L, XIAO L, LIU H X, et al. Acid leaching pretreatment on two-stage roasting pyrite cinder for gold extraction and co-precipitation of arsenic with iron[J]. Hydrometallurgy, 2018, 179: 192-197.
- [11] LI W H, HAN J W, LIU W, et al. Separation of arsenic from lead smelter ash by acid leaching combined with pressure oxidation[J]. Separation and Purification Technology, 2021, 273: 118988.
- [12] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals [J]. Analytical Chemistry, 1979, 51(7): 844-851.
- [13] 商攀峰.燃煤电厂脱硫石膏中痕量元素赋存形态分析[D].北京:华北电力大学,2017.
- [14] PENG B, LEI J, MIN X B, et al. Physicochemical properties of arsenic-bearing lime-ferrate sludge and its leaching behaviors
 [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(5): 1188-1198.
- [15] TIAN J, ZHANG X F, WANG Y F, et al. Alkali circulating leaching of arsenic from copper smelter dust based on arsenicalkali efficient separation [J]. Journal of Environmental Management, 2021, 287: 112348.
- [16] LEI J, PENG B, LIANG Y J, et al. Effects of anions on calcium arsenate crystalline structure and arsenic stability [J]. Hydrometallurgy, 2018, 177: 123-131.
- [17] GUAN Q J, SUI Y, LIU C F, et al. Characterization and leaching kinetics of rare earth elements from phosphogypsum in hydrochloric acid[J]. Minerals, 2022, 12(6): 703.
- [18] TOMELLINI M, FANFONI M. Connection between phantom and spatial correlation in the Kolmogorov-Johnson-Mehl-Avramimodel: A brief review[J]. Physica A: Statistical Mechanics and its Applications, 2022, 590: 126748.