群智能优化与可解释数据驱动方法在锯齿形节理岩体抗剪强度预测中的应用研究
DOI:
作者:
作者单位:

福建马坑矿业股份有限公司 福建龙岩 364000

作者简介:

通讯作者:

基金项目:


Application of group intelligent optimization and interpretable data-driven method in shear strength prediction of zigzag segmented rock mass
Author:
Affiliation:

Fujian Makeng Mining Co.,Ltd Fujian Longyan 364000

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    锯齿形节理是岩体中常见的一种结构面形态,其特殊的几何形态和结构特征对岩体的抗剪强度和稳定性具有重要影响。为克服原位试验获取节理岩体抗剪强度耗费大量人力与物力的问题,研究探索了群智能优化技术与可解释数据驱动方法在锯齿形节理岩体抗剪强度预测中的应用。首先,收集50组锯齿形节理岩体样本数据构成样本数据库,包括岩石基本摩擦角、节理面法向应力、法向应力与完整岩石抗拉强度之比、节理倾角以及抗剪强度。随后,分别构建4个基于机器学习的数据驱动模型和2个基于群智能优化算法的组合模型来预测锯齿形节理岩体剪切强度,直接建立输入参数与抗剪强度之间的非线性关系。最后,采用模型评价指标:决定系数(R2)、校正决定系数(Adj.R2)、均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)及方差贡献率(VAF)量化对比各模型的预测表现。结果表明CSA-XGBoost是最佳预测模型,R2(0.980)、Adj.R2(0.964)、RMSE(0.335)、MAE(0.265)、MAPE(5.72%)、VAF(99.1%),能够有效预测锯齿形节理岩体抗剪强度。此外,本文还使用TreeSHAP方法量化不同特征对锯齿形节理岩体抗剪强度的影响程度,发现节理面法向应力和节理倾角对剪切强度的影响较大,需要在工程设计与施工中加以重视和考虑。

    Abstract:

    : Seragged joint is a common structural surface form in rock mass, its special geometric form and structural characteristics have an important influence on the shear strength and stability of rock mass. In order to overcome the problem that it takes a lot of manpower and material resources to obtain the shear strength of segmented rock mass in in situ test, the application of group intelligent optimization technology and interpretable data driven method in the shear strength prediction of zigzag segmented rock mass is explored. First, 50 sets of zigzag rock sample data were collected to form the sample database, including the basic friction Angle of rock, normal stress of joint surface, ratio of normal stress to tensile strength of complete rock, joint inclination angle and shear strength. Subsequently, four machine learning-based data-driven models and two combined models based on group intelligent optimization algorithms were constructed to predict the shear strength of zigzag segmented rock mass, directly establishing the nonlinear relationship between input parameters and shear strength. Finally, the prediction performance of each model was quantified by using the coefficient of determination (R2), corrected coefficient of determination (Adj.R2), root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and variance contribution rate (VAF). The results show that CSA-XGBoost is the best prediction model, R2(0.980), Adj.R2 (0.964), RMSE (0.335), MAE (0.265), MAPE (5.72%), VAF (99.1%), which can effectively predict the shear strength of zigzag rock mass. In addition, TreeSHAP method is used to quantify the degree of influence of different characteristics on the shear strength of zigzag rock mass, and found that the normal stress and inclination Angle have a great influence on shear strength, which needs to be paid attention to and considered in engineering design and construction.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-07-11
  • 最后修改日期:2024-10-12
  • 录用日期:2024-10-14
  • 在线发布日期: