基于决策树-灰色关联度模型的巷道冒顶风险评价应用研究
DOI:
作者:
作者单位:

1.湖南科技大学;2.湖南科技大学资安学院

作者简介:

通讯作者:

基金项目:

国家自然科学基金项目(52374088),国家自然科学基金项目(52074115),国家自然科学基金项目(52274080)


Application research of roadway roof collapse risk assessment based on decision tree-grey relational degree model
Author:
Affiliation:

Hunan University Of Science And Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了降低巷道冒顶带来的危害,提高煤矿开采效率,及时且准确预测巷道冒顶风险,本文在选取十二个评价指标的基础上,基于灰色关联度分析及决策树算法提出了一种巷道冒顶风险评价模型。首先基于灰色关联度分析法(GRA)计算各指标与风险等级之间的关联度,根据计算结果对评价指标进行筛选,选取强相关指标;然后使用决策树(DT)的机器学习算法建立了巷道冒顶评价模型。为验证模型有效性,选取恩洪煤矿122907工作面运输巷及122912工作面回风巷作为案例,应用该模型进行风险评价,将评价结果与单一的决策树(DT)模型评价结果进行对比。灰色关联度分析表明,十二种指标中周围扰动情况指标关联度相对其他十一种指标关联度较小,确认为弱相关指标予以剔除。评价结果显示,该评价方法的评价结果符合实际工况,正确率为83%,而单一的决策树模型评价结果正确率仅为67%,决策树-灰色关联度模型评价结果优于决策树模型。构建的灰色关联度-决策树模型有效解决了弱相关指标干扰问题,显著提升了巷道冒顶风险评估精度。该方法可为煤矿巷道安全评价提供新的技术路径,具有工程推广应用价值。

    Abstract:

    In order to reduce the harm caused by roadway roof fall, improve the efficiency of coal mining, and predict the risk of roadway roof fall timely and accurately, this paper proposes a risk assessment model of roadway roof fall based on grey correlation degree analysis and decision tree algorithm on the basis of 12 evaluation indexes. Firstly, the correlation degree between each index and the risk level is calculated based on grey relational analysis (GRA), and the evaluation indexes are screened according to the calculation results, and the strongly correlated indexes are selected. Then the machine learning algorithm of decision tree (DT) is used to establish the evaluation model of tunnel roof fall. In order to verify the validity of the model, the transport lane and return air lane of 122907 working face in Enhong Coal Mine are selected as cases to carry out risk assessment with the model, and the evaluation results are compared with the evaluation results of a single decision tree (DT) model. The gray correlation degree analysis shows that the correlation degree of 12 indicators of surrounding disturbance is smaller than that of the other 11 indicators, and the indicators are identified as weak correlation and removed. The evaluation results show that the evaluation results of this method are in line with the actual conditions, and the accuracy of the evaluation results of the single decision tree model is only 67%, and the evaluation results of the decision tree-grey relational degree model are better than the decision tree model. The grey correlation degree decision tree model effectively solves the interference problem of weak correlation indicators, and significantly improves the assessment accuracy of roadway roof fall risk. This method can provide a new technical path for mine roadway safety evaluation, and has the value of engineering popularization and application.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-01-09
  • 最后修改日期:2025-02-25
  • 录用日期:2025-02-26
  • 在线发布日期: