基于MODIS火点和Logistic模型的湖南省森林火灾动态变化及趋势分析
DOI:
作者:
作者单位:

湖南科技大学 资源环境与安全工程学院

作者简介:

通讯作者:

基金项目:

国家自然科学(42171134);湖南省自然科学基金项目(2023JJ30237)


Dynamic Changes and Trend Analysis of Forest Fires in Hunan Province Based on MODIS Fire Points and Logistic Model
Author:
Affiliation:

College of Resources,Environment and Safety Engineering,Hunan University of Science and Technology,Xiangtan

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    湖南省作为森林火灾频发的省份,掌握森林火情时空分布规律对森林火灾预防与应急响应具有重要意义。本文基于MODIS火点数据,探讨2001–2022年湖南省森林火灾动态变化;结合气象数据,利用二项Logistic回归分析方法构建了森林火灾风险概率模型。结果表明: 2001–2022年间湖南省林区火点数量呈先增加后波动减少的趋势,集中分布于南部和西南部地区;森林火灾风险概率模型拟合效果较好,AUC值为0.916,能够有效评估森林火灾风险模式;在不同升温情景(1.5℃/2℃/3℃)下,森林火灾发生风险显著提升,与参考时段(2016–2022年)相比,全省极高风险区域面积占比分别增加了2.4%、9.8%和30.8%。

    Abstract:

    Hunan Province, as a region frequently affected by forest fires, has significant importance in understanding the spatiotemporal distribution of forest fire occurrences for effective emergency response. This study examines the dynamic changes in forest fires in Hunan Province from 2001 to 2022 using MODIS fire hotspot data. By integrating meteorological data, we construct a Logistic Regression based forest fire risk probability model. During 2001–2022, the number of fire hotspots in Hunan Province initially increased and then fluctuated and decreased, with the hotspots concentrated in the southern and southwestern regions of the province. The forest fire risk probability model established in this study demonstrates a high accuracy with an AUC value of 0.916, which effectively reflects forest fire risks. Under different warming scenarios (1.5°C/2°C/3°C), the risk of forest fires significantly increased. Compared to the reference period (2016–2022), the area with extremely high risk increased by 2.4%, 9.8%, and 30.8%, respectively.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-01-02
  • 最后修改日期:2025-02-22
  • 录用日期:2025-02-23
  • 在线发布日期: